Optical photon transport in powdered-phosphor scintillators. Part 1. Multiple-scattering and validity of the Boltzmann transport equation.
نویسندگان
چکیده
PURPOSE In Part 1 of this two-part work, predictions for light transport in powdered-phosphor screens are made, based on three distinct approaches. Predictions of geometrical optics-based ray tracing through an explicit microscopic model (EMM) for screen structure are compared to a Monte Carlo program based on the Boltzmann transport equation (BTE) and Swank's diffusion equation solution. The purpose is to: (I) highlight the additional assumptions of the BTE Monte Carlo method and Swank's model (both previously used in the literature) with respect to the EMM approach; (II) demonstrate the equivalences of the approaches under well-defined conditions and; (III) identify the onset and severity of any discrepancies between the models. A package of computer code (called phsphr) is supplied which can be used to reproduce the BTE Monte Carlo results presented in this work. METHODS The EMM geometrical optics ray-tracing model is implemented for hypothesized microstructures of phosphor grains in a binder. The BTE model is implemented as a Monte Carlo program with transport parameters, derived from geometrical optics, as inputs. The analytical solution of Swank to the diffusion equation is compared to the EMM and BTE predictions. Absorbed fractions and MTFs are calculated for a range of binder-to-phosphor relative refractive indices (n = 1.1-5.0), screen thicknesses (t = 50-200 μm), and packing fill factors (pf = 0.04-0.54). RESULTS Disagreement between the BTE and EMM approaches increased with n and pf. For the largest relative refractive index (n = 5) and highest packing fill (pf = 0.5), the BTE model underestimated the absorbed fraction and MTF50, by up to 40% and 20%, respectively. However, for relative refractive indices typical of real phosphor screens (n ≤ 2), such as Gd2O2S:Tb, the BTE and EMM predictions agreed well at all simulated packing densities. In addition, Swank's model agreed closely with the BTE predictions when the screen was thick enough to be considered turbid. CONCLUSIONS Although some assumptions of the BTE are violated in realistic powdered-phosphor screens, these appear to lead to negligible effects in the modeling of optical transport for typical phosphor and binder refractive indices. Therefore it is reasonable to use Monte Carlo codes based on the BTE to treat this problem. Furthermore, Swank's diffusion equation solution is an adequate approximation if a turbidity condition, presented here, is satisfied.
منابع مشابه
Optical photon transport in powdered-phosphor scintillators. Part II. Calculation of single-scattering transport parameters.
PURPOSE Monte Carlo methods based on the Boltzmann transport equation (BTE) have previously been used to model light transport in powdered-phosphor scintillator screens. Physically motivated guesses or, alternatively, the complexities of Mie theory have been used by some authors to provide the necessary inputs of transport parameters. The purpose of Part II of this work is to: (i) validate pred...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملروشی برای شبیه سازی ترابرد فوتون درماده
Monte Carlo simulation is widely used in calculations involing transport of photons through different materials of different shapes. The method consists of randomly generating a finite set of photon histories over which the quantities of interest are averaged. In photon transport calculations, sampling the photon scattering angle from the Klein-Nishina probability distribution is of special i...
متن کاملComparison of ScintSim1 and Geant4 Monte Carlo simulation codes for optical photon transport in thick segmented scintillator arrays
Introduction: Arrays of segmented scintillation crystals are useful in megavoltage x-ray imaging detectors for image-guided radiotherapy. Most previous theoretical studies on these detectors have modelled only ionizing-radiation transport. Scintillation light also affects detector performance. ScintSim1, our previously reported optical Monte Carlo code for such detector...
متن کاملThe electrical transport properties in ZnO bulk, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO heterostructures
p { margin-bottom: 0.1in; direction: rtl; line-height: 120%; text-align: right; }a:link { color: rgb(0, 0, 255); } In this paper, the reported experimental data related to electrical transport properties in bulk ZnO, ZnMgO/ZnO and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitavely and the most important scattering parameters on controlling electron concentratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2013